52 research outputs found

    Noninjection Synthesis of CdS and Alloyed CdSxSe1−xNanocrystals Without Nucleation Initiators

    Get PDF
    CdS and alloyed CdSxSe1−x nanocrystals were prepared by a simple noninjection method without nucleation initiators. Oleic acid (OA) was used to stabilize the growth of the CdS nanocrystals. The size of the CdS nanocrystals can be tuned by changing the OA/Cd molar ratios. On the basis of the successful synthesis of CdS nanocrystals, alloyed CdSxSe1−x nanocrystals can also be prepared by simply replacing certain amount of S precursor with equal amount of Se precursor, verified by TEM, XRD, EDX as well as UV–Vis absorption analysis. The optical properties of the alloyed CdSxSe1−x nanocrystals can be tuned by adjusting the S/Se feed molar ratios. This synthetic approach developed is highly reproducible and can be readily scaled up for potential industrial production

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe

    High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking

    Get PDF
    Establishing multi-colour patterning technology for colloidal quantum dots is critical for realising high-resolution displays based on the material. Here, we report a solution-based processing method to form patterns of quantum dots using a light-driven ligand crosslinker, ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate). The crosslinker with two azide end groups can interlock the ligands of neighbouring quantum dots upon exposure to UV, yielding chemically robust quantum dot films. Exploiting the light-driven crosslinking process, different colour CdSe-based core-shell quantum dots can be photo-patterned; quantum dot patterns of red, green and blue primary colours with a sub-pixel size of 4 mu mx16 mu m, corresponding to a resolution of >1400 pixels per inch, are demonstrated. The process is non-destructive, such that photoluminescence and electroluminescence characteristics of quantum dot films are preserved after crosslinking. We demonstrate that red crosslinked quantum dot light-emitting diodes exhibiting an external quantum efficiency as high as 14.6% can be obtained. Designing high-resolution displays based on colloidal quantum dots remains a challenge. Here, the authors demonstrate a photo-patterning method to develop CdSe-based core-shell quantum dots patterns of red, green and blue colours with diameters ranging from 7 to 20nm and resolution of 1400 pixels per inch

    Remotely Controlled Proton Generation for Neuromodulation

    No full text
    Understanding and modulating proton-mediated biochemical processes in living organisms have been impeded by the lack of tools to control local pH. Here, we design nanotransducers capable of converting non-invasive alternating magnetic fields (AMFs) into protons in physiological environments by combining magnetic nanoparticles (MNPs) with polymeric scaffolds. When exposed to AMFs, the heat dissipated by MNPs triggered a hydrolytic degradation of surrounding polyanhydride or polyester, releasing protons into the extracellular space. pH changes induced by these nanotransducers can be tuned by changing the polymer chemistry or AMF stimulation parameters. Remote magnetic control of local protons was shown to trigger acid-sensing ion channels and evoke intracellular calcium influx in neurons. By offering a wireless modulation of local pH, our approach can accelerate the mechanistic investigation of the role of protons in biochemical signalling in the nervous system.</p

    Remotely Controlled Proton Generation for Neuromodulation

    No full text
    Copyright © 2020 American Chemical Society. Understanding and modulating proton-mediated biochemical processes in living organisms have been impeded by the lack of tools to control local pH. Here, we design nanotransducers capable of converting noninvasive alternating magnetic fields (AMFs) into protons in physiological environments by combining magnetic nanoparticles (MNPs) with polymeric scaffolds. When exposed to AMFs, the heat dissipated by MNPs triggered a hydrolytic degradation of surrounding polyanhydride or polyester, releasing protons into the extracellular space. pH changes induced by these nanotransducers can be tuned by changing the polymer chemistry or AMF stimulation parameters. Remote magnetic control of local protons was shown to trigger acid-sensing ion channels and to evoke intracellular calcium influx in neurons. By offering a wireless modulation of local pH, our approach can accelerate the mechanistic investigation of the role of protons in biochemical signaling in the nervous system

    Equipment: Lamps and Gear

    No full text

    Magnetothermal nanoparticle technology alleviates parkinsonian-like symptoms in mice

    No full text
    AbstractDeep brain stimulation (DBS) has long been used to alleviate symptoms in patients suffering from psychiatric and neurological disorders through stereotactically implanted electrodes that deliver current to subcortical structures via wired pacemakers. The application of DBS to modulate neural circuits is, however, hampered by its mechanical invasiveness and the use of chronically implanted leads, which poses a risk for hardware failure, hemorrhage, and infection. Here, we demonstrate that a wireless magnetothermal approach to DBS (mDBS) can provide similar therapeutic benefits in two mouse models of Parkinson’s disease, the bilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and in the unilateral 6-hydroxydopamine (6-OHDA) model. We show magnetothermal neuromodulation in untethered moving mice through the activation of the heat-sensitive capsaicin receptor (transient receptor potential cation channel subfamily V member 1, TRPV1) by synthetic magnetic nanoparticles. When exposed to an alternating magnetic field, the nanoparticles dissipate heat, which triggers reversible firing of TRPV1-expressing neurons. We found that mDBS in the subthalamic nucleus (STN) enables remote modulation of motor behavior in healthy mice. Moreover, mDBS of the STN reversed the motor deficits in a mild and severe parkinsonian model. Consequently, this approach is able to activate deep-brain circuits without the need for permanently implanted hardware and connectors.</jats:p
    • 

    corecore